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Abstract

We investigate some algebraic properties of the system of
stochastic numbers with the arithmetic operations addition
and multiplication by scalars and the relation inclusion and
point out certain practically important consequences from
these properties. Our idea is to start from a minimal set
of empirically known properties and to study these proper-
ties by an axiomatic approach. Based on this approach we
develop an algebraic theory of stochastic numbers. A nu-
merical example based on the Lagrange polynomial demon-
strates the consistency between the CESTAC method and the
presented theory of stochastic numbers.

1. Introduction

The CESTAC method is a widely used statistical Monte-
Carlo type method to compute the accuracy of the solu-
tion of real life numerical problems implemented on a com-
puter. In this method an imprecise numbers is represented
as an N -tuple of random values with Gaussian distribution
so that the mean value and standard deviation of this N -
tuple provide respectively approximations of the exact un-
known value and of the error. Such an N -tuple which is
a sampling of a Gaussian random variable is named in this
context a discrete stochastic number. In practice the CES-
TAC method has been implemented in a software called
CADNA in which the N samples of the stochastic num-
bers are randomly rounded up or down so as to take into
account the round-off errors, see [3], [8], [9], [12], with the
same idea that directed rounding is used for implementing
interval arithmetic [5].

In order to provide a good algebraic understanding of
the performance of the CESTAC method discrete stochastic
numbers have been modeled as Gaussian random variables

with a known mean value and a known standard deviation
named here stochastic numbers. Thus stochastic numbers
are idealizations of discrete stochastic numbers. To get an
idea of the operations between stochastic numbers it should
be mentioned that we are concerned with imprecise data
in which the unknown errors are relatively important (say,
of order 10−2–10−3) whereas the arithmetic operations are
performed using double precision arithmetic. In this case
it can be easily checked that addition and multiplication by
reals in the CESTAC method satisfy certain algebraic prop-
erties, e. g. stochastic numbers form a commutative and
cancellative monoid with respect to addition. Some funda-
mental properties of stochastic numbers are considered in
[4], [10].

This work is part of a more general one, which aims,to
study the abstract algebraic structures induced by the oper-
ations on stochastic numbers and to compare the relevant
theory with the performance of the CESTAC method [1],
[2], [6], [7]. In the paper we restrict ourselves to the arith-
metic operations addition, negation and multiplication by
scalars and the relation inclusion.

1.1. Stochastic Arithmetic (CSA): basic
properties

Denote by S the set of stochastic numbers and by Sn the
set of all n-tuples of stochastic numbers. The operations
addition and multiplication by −1 (negation) are well de-
fined in S, resp. Sn. We next recall some basic properties
of these operations and derive some logical consequences
of these properties, which will allow us to better under-
stand the nature of stochastic numbers. The system (Sn, +)
is a commutative monoid (semigroup with null) with can-
cellation law. The operator negation is an automorphism
¬ : Sn → Sn, that is: ¬(A + B) = ¬A + (¬B), and
involution: ¬(¬A) = A. These properties can be checked
experimentally, say, by a CESTAC-like method, see e. g.



[8], [9], [10]. So, we next consider these properties as ax-
iomatically given, and we want to derive some simple con-
sequences.

We first note that Sn is not a group with respect to addi-
tion; however it can be easily embedded in a group. The
standard algebraic construction that converts any abelian
monoid with cancellation law into a group will be further
referred as embedding construction. Recall that this ap-
proach is used to pass from the monoid of nonnegative reals
(R+, +) to the set of reals (R, +). Thus, it is natural instead
of the original system (Sn, +) to consider the extended sys-
tem (Sn, +) obtained by the embedding construction. We
next briefly recall this construction.

1.2. Algebraic completion of the monoid of
stochastic numbers

Every abelian monoid (M, +) with cancellation law in-
duces an abelian group (M, +), where M = M2/ ∼ is
the difference (quotient) set of M consisting of all pairs
(A, B) factorized by the congruence relation ∼: (A, B) ∼
(C, D) iff A+D = B+C, for A, B, C, D ∈ M . Addition
in M is defined by (A, B) + (C, D) = (A + C, B + D).
The neutral (null) element of M is the class (Z, Z), Z ∈
M . Due to the existence of null element in M , we have
(Z, Z) ∼ (0, 0). The opposite element to (A, B) ∈ M

is opp(A, B) = (B, A). The mapping ϕ : M −→ M

defined for A ∈ M by ϕ(A) = (A, 0) ∈ M is an em-
bedding of monoids. We embed M in M by identifying
A ∈ M with the equivalence class (A, 0) ∼ (A + X, X),
X ∈ M ; all elements of M admitting the form (A, 0)
are called proper and the remaining (new) elements are
called improper. The set of all proper elements of M is
ϕ(M) = {(A, 0) | A ∈ M} ∼= M .

Using the embedding construction described above the
system (Sn, +) is embedded into a group (Sn, +) in a
unique way. We define multiplication by −1, called nega-
tion, in the group S

n, by means of: ¬(A, B) = (¬A,¬B),
A, B ∈ Sn. In what follows we shall use lower case
roman letters to denote the elements of S

n, writing e. g.
a = (A1, A2), A1, A2 ∈ S

n. Thus negation will be denoted
as ¬a; a ¬ b means a + (¬b). Clearly the properties of
negation in S hold also in S, that is: ¬(a + b) = ¬a ¬ b
and ¬(¬a) = a. From opp(a) + a = 0 we obtain
¬opp(a) ¬ a = 0, that is ¬opp(a) = opp(¬a). The el-
ement ¬opp(a) = opp(¬a) is further denoted by a− and
the corresponding operator is called dualization or conju-
gation. We say that a− is the conjugate (or dual) of a. In
the sequel we shall express the opposite element symboli-
cally as: opp(a) = ¬a−, minding that a + (¬a−) = 0 (to
be briefly written a ¬ a− = 0).

In Section 2 we investigate the system (Sn, +,¬) ob-
tained by algebraic completion by means of a novel ap-

proach. Namely, starting from a minimal set of basic al-
gebraic properties, we naturally arrive to the necessity of
studying separately the spaces of mean values (which is
a vector space) and of standard deviations (which is an s-
space). In Section 3 we consider the system (Sn, +, R, ∗).
There we also discuss an algebraically natural approach to
define an order relation inclusion for stochastic numbers ar-
riving thus to the system (Sn, +, R, ∗,⊆). In Section 4 we
give some numerical examples aiming to compare the CSA
theory with the performance of the CESTAC method. Our
numerical experiments with Lagrange interpolation demon-
strate that the model of stochastic numbers is, at least in the
case of the operationsin consideration, in perfect agreement
with the results obtained with the CESTAC method.

2. Decomposing the group of stochastic num-
bers

We shall now concentrate on the algebraic properties of
the system (Sn, +,¬). For a better understanding the fol-
lowing reminder about expressions involving the dual op-
erator will be useful: i) a + opp(a) = 0 is equivalent to
a− ¬ a = 0 or a ¬ a− = 0; ii) (a + b)− = a− + b−, iii)
y ¬ y = 0 is equivalent to y = y−; iv) ¬z = z is equivalent
to z + z− = 0. An element y with property iii) is called lin-
ear or distributive; an element z with property iv) is called
centred or 0-symmetric.

Denote nx = x + x + ... + x (n times). We recall that
a divisible (additive) group is such that every equation of
the form nx = a has a solution x for any a ∈ G; the solu-
tion will be further denoted (1/n)a. An (additive) group is
torsion-free if na = 0 implies a = 0 for any a ∈ G.

Remark. Clearly, the group of stochastic numbers is
divisible and torsion-free (the monoid possesses the same
properties). For our purposes it will be sufficient that the
following two properties hold in (G, +): i) x + x = a =⇒
x = (1/2)a, and ii) x + x = 0 =⇒ x = 0. Note that the
latter property is equivalent to x + x = y + y =⇒ x = y
(indeed, x +x = y + y =⇒ (x ¬ y−)+ (x ¬ y−) = 0 =⇒
(x ¬ y−) = 0 =⇒ x = y).

Let (G, +) be an additive abelian divisible torsion-free
group. In addition we shall assume that G posseses an
involutary automorphism ¬ : G → G, such that: C1.
¬(a + b) = ¬a ¬ b; C2. ¬(¬a) = a.

Remark. In particular, the operator “¬” may coincide
with opposite or identity. Conditions C1–C2 imply ¬0 = 0
(to see this substitute b = ¬a− in C1).

Theorem (Decomposition theorem). G is an additive
divisible torsion-free abelian group with an involutary au-
tomorphism “¬”. For every x ∈ G there exist unique
y, z ∈ G, such that: i) x = y + z; ii) y ¬ y = 0; iii)
¬z = z; iv) y = z =⇒ y = z = 0.



Proof. Let us consider equations i)–iii) as a system of
equations for x, y, z and let us solve this system with re-
spect to y and z. To this end we shall repeatedly use some
properties of the dual operator, such that opp(a) = ¬a−,
equation y ¬ y = 0 is equivalent to y = y− and ¬z = z is
equivalent to z + z− = 0.

Write x = y + z in the form: x− = y− + z−; replacing
y− by y and z by ¬z we obtain: x− = y ¬ z−. Adding the
latter equation to x = y + z we obtain

x + x− = y + y. (1)

Similarly, write x = y + z in the form :¬x = ¬y + ¬z;
replacing y− by y and z by ¬z we obtain: ¬x = ¬y− + z.
Adding the latter equation to x = y + z we obtain

x ¬ x = z + z. (2)

Summing up equations (1) and (2) we obtain x + x =
y + y + z + z, which implies x = y + z (using that x+x =
0 =⇒ x = 0).

Assume now that a x ∈ G is given. Chose y and z to
satisfy resp. (1) and (2). Such elements exist due to the
divisibility assumption; denote them y = (1/2)(x + x−)
and z = (1/2)(x ¬ x). Clearly, y is linear, whereas z is
centred. As we have x = y + z, it follows that any x ∈ G is
decomposable into a sum of a linear and a centred element.
To show that the sum is direct, it remains to prove that y =
z =⇒ y = z = 0. Assume y = z. Then y + y = z + z,
or x + x− = x ¬ x. The latter implies x− = ¬x, or
x = ¬x− = opp(x), or x + x = 0, or x = 0 (again due to
the assumption x + x = 0 =⇒ x = 0). �

Comments. The Decomposition theorem states that any
x ∈ G can be written in the form:

x = y + z = (1/2)(x + x−) + (1/2)(x ¬ x). (3)

The element y = (1/2)(x+x−) satisfies y = y−, equiv-
alently y ¬ y = 0; thus y is a linear (distributive) element.

Alternatively, the element z = (1/2)(x ¬ x) satisfies
z = ¬z, equivalently z + z− = 0; therefore z is centred
(0-symmetric).

The subset of all linear elements of G is denoted G′ =
{y ∈ G | y ¬ y = 0} and the subset of all centred elements
of G is denoted G′′ = {z ∈ G | z = ¬z}.

If negation coincides with opposite in G, then x ¬ x = 0
for all x ∈ G and, from (3): x = (1/2)(x + x−) for all
x ∈ G. In this case the subset G′′ is empty and G consists
only of linear elements. Alternatively, if negation coincides
with identity in G, then x+x− = 0 for all x ∈ G and, from
(3): x = (1/2)(x ¬ x) for all x ∈ G. In this case the subset
G′ is empty and G consists only of centred elements.

Corollary. Let G be an additive divisible torsion-free
abelian group with an involutary automorphism “¬”. Then

G is a direct sum of G′ = {y ∈ G | y ¬ y = 0} and
G′′ = {z ∈ G | z = ¬z}, symbolically G = G′ ⊕G′′.

Remark. Note that while the group G = (G, +,¬) pos-
sesses an operator (negation) in addition to opposite, the
subgroups G′, G′′ do not possess additional operator (as
negation coincides with opposite in G′ and with identity in
G′′). Therefore we do not need to write down the operator
negation in the groups: G = G′ ⊕G′′ can be written as
(G, +,¬) = (G′, +)

⊕
(G′′, +).

2.1. Practical consequences

The Decomposition theorem implies that the alge-
braically natural presentation of stochastic numbers is as
a sum of two components — a linear component and a
centred component. The linear component, by definition,
is such that negation of this element coincides with oppo-
site, and the centred component is such that negation co-
incides with identity. The latter holds for elements of S,
but it also holds for elements of S (that is proper stochastic
numbers). Indeed, by the embedding construction, proper
stochastic numbers as elements of S are pairs of the form
(A, 0), wherein A ∈ S. Assume first that (A, 0) is linear,
that is (A, 0) ¬ (A, 0) = 0; this implies A ¬ A = 0,
that is negation of A coincides with opposite. Such prop-
erty have, e. g., real numbers (real vectors) as elements of
a linear space. Assume now that (A, 0) is centred, that is
(A, 0) = ¬ (A, 0); this means A = ¬ A, that is negation
of A coincides with identity.

According to the Corollary the group of stochastic num-
bers S decomposes as a direct sum of two subgroups S =
S′ ⊕

S
′′. Thus a stochastic number a ∈ S can be written in

the form a = (a′; a′′). As well-known, the first component
a′ is interpreted as mean value, and the second component
a′′ is the standard deviation. A stochastic number of the
form (a′; 0) has zero standard deviation and represents a
(pure) mean value, whereas a stochastic number of the form
(0; a′′) has zero mean value and represents a (pure) standard
deviation. Using addition in S, as defined in a direct sum by
means of (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′), we have
the presentation a = (a′; a′′) = (a′; 0) + (0; a′′). For nega-
tion we have ¬a = ¬(a′; a′′) = (¬a′;¬a′′) = (−a′; a′′),
minding that ¬a′ = −a′ and ¬a′′ = a′′.

In the case of stochastic vectors we have: a = (a′; a′′) ∈
S

n with a′ ∈ R
n, a′′ ∈ R

n. We have a′′ ≥ 0 for a proper;
a′′ has at least one negative component for improper a.

The two systems (S′, +), (S′′, +) composing (S, +,¬)
are of distinct algebraic nature, hence it is correct to use
different notations for the operation addition. The system
of mean values is identified with the additive group of reals
(R, +) where negation coincides with opposite: ¬δ = −δ
for δ ∈ R. Therefore we shall use the usual sign for addition
in the system (S′, +), but we use a distinct sign for addition



in the system (S′′, +), namely (S′′,⊕).
In order to characterize the system (S′′,⊕) define for

α ∈ R the sign function σ by: σ(α) = {+, if α ≥
0; −, if α < 0}. As shown in [6], [7], the system
(S′′,⊕) is identified with the group system (R,⊕), where
for α, β ∈ R addition is defined by:

α ⊕ β = σ(α + β)
√

|σ(α)α2 + σ(β)β2|, (4)

and negation is identity: ¬δ = δ for δ ∈ R.
Define the symmetric square and square root functions

by: α
b2 = σ(α)α2, α

d1/2 = σ(α)|α|1/2, α ∈ R. If α ≥ 0
then α

b2 coincides with α2, similarly α
d1/2 and α1/2 are iden-

tical; however if α < 0 then α
b2 = −α2, α

d1/2 = −α1/2.
Using the symmetric square and square root functions (4)
can be written as

α ⊕ β = (αb2 + β
b2)

d1/2. (5)

For two stochastic numbers (m1; s1), (m2; s2) ∈ S, we
have

(m1; s1) + (m2; s2) = (m1 + m2; (s
b2
1 + s

b2
2)

d1/2), (6)

¬(m1; s1) = (−m1; s1). (7)

For the special case of two proper stochastic numbers
(m1; s1), (m2; s2), s1, s2 ≥ 0, formula (6) becomes

(m1; s1) + (m2; s2) = (m1 + m2;
√

s2
1 + s2

2). (8)

This is the familiar formula for the addition of two in-
dependent random variables with normal distribution. The
advantage of formula (6) is that it can be applied in the gen-
eral case without assuming nonnegativity of standard devi-
ations.

3. The space (Sn, +, R, ∗,⊆)

The Decomposition theorem states that a group with
negation is a direct sum of two spaces under mild as-
sumptions for the group (divisibility, torsion-freedom) and
the negation operator (automorphism, involution). As the
groups S, resp. S

n, satisfy these assumptions (as known
from empirical evidence), we can state that S = S

′ ⊕
S
′′,

resp. S
n = (S′)n ⊕

(S′′)n, where S
′ is the space of mean

values and S
′′ is the space of standard deviations.

3.1. Multiplication by scalars

Multiplication by scalars “∗” is defined for x = (m; s) ∈
S by

γ ∗ x = γ ∗ (m; s)
def
= (γm; |γ|s), γ ∈ R. (9)

Clearly, the system (S′, +, R, ∗) is a linear space and will
be written also as (S′, +, R, ·). As we know the system
(S′′,⊕, R, ∗), resp. ((S′′)n,⊕, R, ∗), with operation addi-
tion defined by (4) and multiplication by scalars defined
from (9) by

γ ∗ s = |γ|s, γ ∈ R, (10)

is an s-space in the sense of the following definition [6]:

Definition. The system (G,⊕, RD, ∗) is called an s-
space if (G,⊕) is an abelian group, such that for s, t ∈ G,
α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (11)

α ∗ (β ∗ s) = (αβ) ∗ s, (12)

1 ∗ s = s, (13)

(−1) ∗ s = s, (14)√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s. (15)

Let us define in (S′′,⊕, R, ∗) two operations as follows:

α + β = (α
d1/2 ⊕ β

d1/2)b2, (16)

γ · s = γ ∗ sσ(γ), γ ∈ R. (17)

It can be easily checked that the space (S′′, +, R, ·) with
operations “+” and “·” defined by (16), (17) is linear. Thus
the space (S′′,⊕, R, ∗) can be considered as a linear space
with two additional operations, namely (S′′, +,⊕, R, ·, ∗).

3.2. Inclusion

We next discuss two relations for inclusion of stochas-
tic numbers. The so-called interval inclusion (briefly: i-
inclusion) is defined for x1 = (m1; s1), x2 = (m2; s2) ∈
S, by:

x1 ⊆i x2 ⇐⇒ |m2 − m1| ≤ s2 − s1. (18)

We note that addition is inverse i-inclusion isotone, that
is: x1 + y ⊆i x2 + y implies x1 ⊆i x2 [2]. However, it
is easy to see that i-inclusion isotonicity does not hold, i. e.
x1 ⊆i x2 does not imply x1 + y ⊆i x2 + y. If we want that
a two-directional implication

x1 ⊆ x2 ⇐⇒ x1 + y ⊆ x2 + y

holds in S, then instead of “⊆i” we should use the inclusion
relation “⊆s” between two stochastic numbers defined by

x1 ⊆s x2 ⇐⇒ |m2 − m1|2 ≤ s2
b2 − s1

b2. (19)

Relation (19) is called stochastic inclusion, briefly: s-
inclusion. In the proper case s-inclusion has been proposed
in [1].



Proposition 1. Addition and multiplication by scalars
are (inverse) inclusion isotone (invariant with respect to s-
inclusion).

The proof in the general case (s real) is similar to the one
for the proper case (s nonnegative) see [1].

Remark. In fact it can be seen that x1 ⊆s x2 if x2 = x1+
y for some stochastic number y = (m, s) whose ”range”
[m − s, m + s] contains 0.

We shall next compare relations (19) and (18). To this
end we introduce an end-point presentation.

End-point presentation. This presentation may be use-
ful when dealing with confidence intervals. The confidence
interval corresponding to the stochastic number (m; s) is
[m − γs, m + γs], where γ > 0 is a chosen number (usu-
ally γ ≈ 2). For simplicity in the sequel we assume γ = 1,
which corresponds to usual compact intervals on R.

Recall that the relation between the end-point presen-
tation of an interval A = [a−, a+] ⊆ R and its mid-
point/radius presentation A = (a′; a′′) is given by:

a− = a′ − a′′, a+ = a′ + a′′;

a′ = (a− + a+)/2, a′′ = (a+ − a−)/2.

Recall also the relation a+a− = a′2 − a′′2.
The i-inclusion (18) admits a simple end-point presenta-

tion, namely for A ⊆i B condition |b′ − a′| ≤ b′′ − a′′ is
presented in end-point form as b− ≤ a−, a+ ≤ b+. We
next look for an end-point presentation for the s-inclusion
(19): A ⊆s B ⇐⇒ (b′ − a′)2 ≤ b′′2 − a′′2.

The condition (b′ − a′)2 ≤ b′′2 − a′′2 can be written as
b′2−b′′2 +a′2 +a′′2 ≤ 2a′b′. Replacing b′2−b′′2 = b+b−,
a′ = (a− + a+)/2, a′′ = (a+ − a−)/2, etc. we obtain:
2b+b− + a+2 + a−2 ≤ (a+ + a−)(b+ + b−). Thus the
end-point condition for s-inclusion obtains the form:

A ⊆s B ⇐⇒ a+2 + a−2 + 2b+b− ≤ (a+ + a−)(b+ + b−),

which can be also written in the form 2(b+b− − a+a−) ≤
(a+ + a−)(b+ + b− − (a+ + a−)).

Proposition 2. Interval inclusion (18) implies stochastic
inclusion (19).

Proof. We sketch the proof for proper stochastic num-
bers. Assume that A = (a′; a′′) is i-included in B =
(b′; b′′), A ⊆i B, which according to (18) means |b′−a′| ≤
b′′ − a′′. We have to show that (19) holds true. Note
first that from (18) we have 0 ≤ a′′ ≤ b′′. Now from
|b′ − a′| ≤ b′′ − a′′ we have (b′ − a′)2 ≤ (b′′ − a′′)2 ≤
(b′′ − a′′)(b′′ + a′′) = b′′2 − a′′2. �

As a consequence from Proposition 2, stochastic addi-
tion is i-inclusion isotone.

3.3. Lattice operations

The lattice operations for the i-inclusion are well-known.
We next consider the lattice operations for the s-inclusion,
sketching the results for proper intervals. The case when
one of the stochastic number is s-included in the other one
is obvious. Let us determine sup(A, B) = C for the case
when neither A ⊆s B, nor B ⊆s A.

Recall that in the case of i-inclusion we have :

c′′ = |c′ − a′| + a′′ = |c′ − b′| + b′′.

From |c′−a′|+a′′ = |c′− b′|+ b′′ we can compute first
c′ and then c′′ = |c′ − a′| + a′′.

Similarly in the case of s-inclusion we have:

c′′2 = a′′2 + (c′ − a′)2 = b′′2 + (b′ − c′)2.

From a′′2 +(c′−a′)2 = b′′2 +(b′− c′)2 we compute c′:

2c′ =
b′2 + b′′2 − (a′2 + a′′2)

b′ − a′ =
b′′2 − a′′2

b′ − a′ + b′ + a′.

For c′′2 = a′′2 + (c′ − a′)2 we obtain:

4c′′2 =
(b′′2 − a′′2)2

(b′ − a′)2
+ 2(b′′2 + a′′2) + (b′ − a′)2.

Let us now determine inf(A, B) = D for the case when
neither A ⊆s B, nor B ⊆s A.

Recall first that in the case of i-inclusion we have:

d′′ = a′′ − |d′ − a′| = b′′ − |d′ − b′|.
From a′′−|d′−a′| = b′′−|d′− b′| we can compute first

d′ and then d′′ = a′′ − |d′ − a′|.
Similarly in the case of s-inclusion we have:

d′′2 = a′′2 − (d′ − a′)2 = b′′2 − (b′ − d′)2.

From a′′2 − (d′ − a′)2 = b′′2 − (b′ − d′)2 we compute
d′:

2d′ =
b′2 − b′′2 − (a′2 − a′′2)

b′ − a′ = −b′′2 − a′′2

b′ − a′ + b′ + a′.

For d′′2 = a′′2 − (d′ − a′)2 we obtain:

4d′′2 = − (b′′2 − a′′2)2

(b′ − a′)2
+ 2(b′′2 + a′′2) − (b′ − a′)2.

Clearly, we have d′′ < 0 for relatively small standard
deviations a′′, b′′ and relatively large value of |b′−a′|. This
means that inf(A, B) can have a negative standard deviation
for proper stochastic numbers. In other words two proper
stochastic numbers may not have a proper infimum.



4. Application: Lagrange interpolation

The goal of this section is to compare the results obtained
with the theory developed in this paper, which is named
continuous stochastic arithmetic (CSA), with respective re-
sults obtained with the CESTAC method and with interval
arithmetic.

As mentioned in the introduction, in the CESTAC
method, each stochastic variable is represented by a N -
tuple of gaussian random values with known mean value
m and standard deviation s. The method also uses a spe-
cial arithmetic called discrete stochastic arithmetic (DSA),
which acts on the N -tuples.

In the scope of granular computing [11], stochastic arith-
metic CSA operates on stochastic numbers and is directly
derived from operations on independent gaussian random
variables. Hence a stochastic number is a granule and CSA
is a tool for computing with granules.

With the same point of view of granular computing, in
discrete stochastic arithmetic (DSA) a granules is composed
by a N -tuple of samples of the same mathematical result
of an arithmetical operator implemented in floating point
arithmetic. The samples differ from each other because
data are imprecise and because of different rounding. The
operator acting on these granules is a floating point opera-
tor corresponding to the exact arithmetical operator which
is performed N times in a synchronous way with random
rounding. Thus the result is also a granule named discrete
stochastic number. It has been shown that DSA operating
on discrete stochastic numbers has many properties (but not
all) of real numbers; In particular the notion of stochastic
zero has been defined. As explained above, the CADNA
library merely implements DSA.

To compare the two models, a specific library has been
developed which implements both continuous and discrete
stochastic arithmetic. The computations are done sepa-
rately. CSA implements the mathematical rules defined
above in sections 2–3.

The comparison has been done on the Lagrangian inter-
polation method. Let (xi, yi), i = 0, 1, ..., n, be a set of
n + 1 pairs of numbers where all xi are different. We want
to compute the value p(t) of the Lagrangian polynomial at
a given point t with the classical formula:

p(t) = y0l0(t) + y1l1(t) + · · · + ynln(t), (20)

wherein

li(t) =

∏
i�=j(t − xj)∏

i�=j(xi − xj)
.

We consider the situation when the values of yi are im-
precise (contain some errors) and xi are considered exact.
This case is within the scope of our theoretical results where

only addition or subtraction between two stochastic num-
bers and multiplication of a stochastic number by a real
number is considered.

For all examples presented below, we take n = 10; the
exact x-values are defined as xi = i, i = 1, ..., n + 1,
and the imprecise values yi are around 1. The latter means
that in the interval case all intervals yi have a midpoint 1,
whereas in the stochastic case they have a mean value 1.

4.1 Interval approach

First, the interval approach is considered to obtain ex-
act bounds for the results assuming that some guaranteed
bounds are given for the data yi in the form of intervals Yi,
that is yi ∈ Yi.

Then it is well-known that at each t

p(t) ∈ P (t) = l0(t) ∗ Y0 + l1(t) ∗ Y1 + · · · + ln(t) ∗ Yn.

The computation of the interval polynomial P (t) has
been performed with the Intlab implementation [5] of in-
terval arithmetic. The maximum error on the Yi value is
ierr = 0.02. With the case Yi = [1 − ierr; 1 + ierr] =
constant and xi = i, i = 1, ..., 11, the upper and lower
bounds of P are shown in black on Fig. 1.

Remark. This is an example when the use of so-called
naive interval arithmetic produces exact (sharp) bounds
(Fig. 1). Normally, naive interval arithmetic produces pes-
simistic bounds. In most cases, such sharp bounds cannot
be obtained by naive interval arithmetic and more sophisti-
cate methods should be used.

4.2 Experiments with stochastic arith-
metic

The computation of (20) is done using the stochastic
arithmetic approach (CSA). This approach is based on the
gaussian random variable (m, σ) with a mean value m
and a standard deviation σ. It is well known that 95%
of the samples of a such variable are inside the interval
[m − 2σ, m + 2σ]. To compare the results with the interval
approach, the Yi are equal to (1, 0.01).

The computation has been performed with our specific
implementation of CSA. A set of (mp(ti), σp(ti)) is ob-
tained. The gray lower and upper curves in the figure 1
represent the results of CSA, i.e. each point of the lower
curve (resp. the upper curve) is equal to mp(ti) − 2 ∗ σp(ti)

(resp. mp(ti) + 2 ∗ σp(ti)).
It can be seen that the two curves corresponding to CSA

are inside the range of those computed with Intlab.



4.3 Discrete stochastic arithmetic

The results computed with DSA are compared with CSA
in figures 2, 3, 4, 5. On each figure, the N samples and
the lower and upper curve obtained with CSA are drawn re-
spectively for N = 3, 5, 10, 20. All the figures are com-
posed of two sub-figures. The left sub-figure shows the N
curves of the samples. The right sub-figure compares the
computed mean value and standard deviation obtained from
the N -samples and the theoretical mean value and standard
deviation obtained with CSA.

From these experiments it can be easily seen that if p(ti)
denotes the mean value of all the samples obtained with
DSA for the computation of p(ti) then: mp(ti) − 2σp(ti) ≤
p(ti) ≤ mp(ti) + 2σp(ti). Hence the experiments show
clearly that CSA is a good model for DSA and the CESTAC
method.

5. Conclusion

Starting from a minimal set of empirically known facts
related to stochastic numbers, we formally deduce a number
of properties and relations. We investigate the complete set
of all stochastic numbers and show that this set possesses
nice algebraic properties. We point out to the distinct alge-
braic nature of the spaces of mean-values and standard de-
viations. Based on the algebraic properties of the complete
set of stochastic numbers we propose a natural relation for
inclusion, called stochastic inclusion. A numerical example
based on the Lagrange polynomial demonstrates the con-
sistency between the CESTAC method and the presented
theory of stochastic numbers.

Acknowledgments. The authors want to thank an
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Figure 1. Lagrangian polynomial obtained
with interval arithmetic (black) and CSA
(gray)
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Figure 2. DSA 3 samples
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Figure 3. DSA 5 samples
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Figure 4. DSA 10 samples
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Figure 5. DSA 20 samples


